
WHITEPAPER

What Model-Based and Component-
Based Software Development Means
for Your Organization
Ken Macklem

3

Contents

Introduction	 	 	 	 	 	 	 	 4

Definitions and Acronyms	 	 	 	 	 	 5

Section 1: Model-Based Development	 	 	 	 6
	 History of Model-Based Development 	 	 	 	 7
	 Definition of Model-Based Development		 	 	 8
	 Application of Model-Based Development	 	 	 8
	 Examples of Model-Based Development				 10
	 Building the Models for your Company				 11
	 How to Implement Model-Based Development
	 for your Company						 11
	 Benefits of Model-Based Development for your Company	 13
	 Challenges with Model-Based Development	 	 	 13

Section 2: Component-Based Development	 	 	 14
	 History of Component-Based Development 	 	 	 15
	 Definition of Component-Based Development	 	 	 16
	 Implementation of Component-Based Development	 	 16
	 Benefits of Component-Based Design for your Company	 	 17
	 Examples of Component-Based Development	 	 	 18
	 Challenges of Component-Based Development			 19

About Oxford	 	 	 	 	 	 	 21

NOTICE OF PROPRIETARY PROPERTY

This document and the information contained in it are the proprietary property of Oxford Global Resources.
Accordingly, it may not be copied or used in any manner, nor may any of the information in or upon it be used
for any purpose without the express written consent of an authorized agent of Oxford Global Resources.

4 | What Model-Based and Component-Based Software Development Means for your Organization 5

Definitions and Acronyms

Definitions

Integrated Circuit: 			 An electronic circuit formed on a small piece of semiconducting 	

					 material, performing the same function as a larger circuit made 	

					 from discrete components.

Microprocessor:			 An integrated circuit that contains all the functions of a central 	

					 processing unit of a computer.

CASE:					 The domain of software tools used to design and implement 	

					 applications.

Model-Based Development:		 A software development methodology based on V-cycle, which 	

					 enables a developer to simulate models for complex control 	

					 processes.

Component-Based Development:	 A procedure that accentuates the design and development of 	

					 computer-based systems with the help of reusable software 	

					 components.

Acronyms

CASE:	 Computer-Aided Software Engineering	

CBD:	 Component-Based Development

MBD:	 Model-Based Development

Introduction

T
his paper provides a history of model-based and component-

based product development and the benefits of applying these

techniques to software development. In this whitepaper, you will

learn the various applications of model- and component-based software

development, along with the potential challenges and how to overcome

them. While many organizations choose different approaches based on

their needs, this paper will provide an overview to help you get started and

some considerations to keep in mind. Of course, there is no one-size-fits-all

method, so if you need support, Oxford can help you with your project.

Ken Macklem
Practice Director,

Engineering

About the Author

For over 40 years, Ken’s passion has been the development of high-quality

microprocessor-based software applications. Most of the software he has

developed has been for safety-critical, real-time, embeddved applications for

the medical device and automotive markets. His experience covers all aspects

of software development, and for the last several years, he has had director-

level roles responsible for software and product development at automotive

and medical device companies. Ken is strong in software development

processes, having developed IEC 62304 compliant processes for three

companies, one of which was recently certified to ISO 9001.

6 | What Model-Based and Component-Based Software Development Means for your Organization 7

Model-Based Development

History of Model-Based Development

In the 21st century, plant modeling tools continued to improve as computer

hardware improved. We saw the advent of powerful CFD modeling tools

on workstations.

After the tech crash, much software development went offshore to countries like

India and Asia. Companies decided to outsource labor at a lower wage than what

local expert engineers expected to be paid. As a result, software methods and tool

development slowed significantly.

1960

1980

1970

1990

Model-based development began in the
aerospace, defense, and automotive
industries.

Workstation-based plant modeling
tools were developed. Several real-time
software analysis and design methods
were developed. Case tools supported
some of these methods, including
simulation. Some of the tools combined
plant models and control models.

Plant model-based algorithm development
with code generation combined plant and
algorithm simulation. Software in the loop

simulation combined production code running
in tandem with a plant model. Hardware in

the loop simulation combined production
code running on a hardware simulator.

Yourdon introduced structured analysis and
design methods for modeling software.

MODEL-
BASED

SECTION 1

8 | What Model-Based and Component-Based Software Development Means for your Organization 9

Definition of Model-Based Development

A model is an abstraction of some real entity that describes one or more aspects of that real entity. The model

accepts input stimuli and shows the real entity’s response to the stimuli. Different types of models of the real entity

can be built and combined to provide a detailed representation of the real entity and its operation.

Simulation of the models approximates the behavior of the real entity. The accuracy of the simulation of models

of physical entities depends on how well the models are characterized. The characteristics of actual parts and

prototypes are measured, and the data is entered into the models. As more parts are characterized, the models

produce better results.

The two main uses of model-based development are modeling physical characteristics of the mechanical and

electrical components of a product or modeling the dynamic behavior and control algorithms of a product.

Most companies are already using CAD / CAM tools for modeling the physical characteristics of a product.

These models are used to:

•	 Ensure all combinations of in-spec parts will

build correctly

•	 Analyze stresses and behavior under load

•	 Design optimizations using Design of Experiments

(DOEs)

•	 Rapidly prototype using additive and subtractive

manufacturing techniques

Model-based development creates models of the product to

be built and, through simulation, executes them to ensure the

design is correct and robust.

Application of Model-Based
Development

Models are typically built to:

•	 Understand the behavior of the physical aspects of the

product during operation

•	 Develop algorithms to control the dynamic behavior of

the product

•	 Develop models of various aspects of the software that

runs on the product

Some companies only model the dynamic behavior of the

product. Other companies only model various aspects of the

software. Control algorithm development is typically done

in conjunction with dynamic modeling. The most significant

benefit of model-based development is derived when all

three types of models are built for the product.

Dynamic Models

Dynamic models use mathematical equations to model the

physics of the product. These models are often referred to

as plant models. Simulation of these models shows how the

product will respond to varying input stimuli over some time.

Examples of dynamic models include:

•	 Automotive vehicle models that determine vehicle

performance and fuel economy

•	 Aircraft models that show how a wing responds to

various types of airflow

•	 Computational fluid dynamic models that show how fluid

moves through a flow path

•	 Models that show how a suspension will behave over

different road surfaces

Small models that simulate a part of the product can be

combined to form larger models that affect the behavior

of significant sub-systems of the product or even the

entire product.

These models are often used in DOEs to optimize certain aspects of product performance. For example, these

models might be used to find an acceptable trade-off between the fuel economy and the cost of parts of the vehicle.

Control Models

Control models are used to develop control strategies and algorithms to ensure that the product performs the

intended task. Control models use dynamic models. The controls engineer develops a control algorithm and then

simulates the algorithm on the dynamic model to see how well the control algorithm performs. The controls engineer

can iteratively tune the control algorithm to optimize the performance.

10 | What Model-Based and Component-Based Software Development Means for your Organization 11

Many control development tools will generate code in C, C++, and other computer languages that can be used

directly in the product. This can reduce the software development effort and time. However, there are downsides to

this approach as well, such as:

•	 Code can be difficult to understand and debug

•	 Documentation may not be sufficient for some

regulated industries

•	 The code might be more difficult to unit test

•	 New code is generated every time a change is made

to the model, making regression testing harder

to identify

•	 Differences in the target hardware and development

hardware may result in the algorithms not

performing the same as the control algorithms

simulated on the development hardware

Software Models

Models of software can be developed to:

•	 Understand software requirements

•	 Document the architecture and component designs

of the software

•	 Understand and document the desired state or

control behavior of the software

•	 Document the interaction of the software and the

users of the product

•	 Simulate the execution of the software to ensure

proper operation of the product

•	 Provide inputs to automated testing of the system

Combining Models

Models can be co-simulated to understand how the product will perform. First, control models can be co-simulated

with the plant models to determine how the product will perform. Later, software models can be co-simulated with

the plant models to assess how the control algorithms were implemented. Finally, production software running on

target hardware can interact with plant models running on test hardware to test aspects of the software.

Examples of Model-Based Development

An automotive Original Equipment Manufacturer (OEM)
tasked a development team to create an electronically
controlled automatic transmission. They were instructed
to reduce the time to a production-ready transmission by
12 months. Model-based development was used to model
the plant and control algorithms. The control algorithms
were implemented in the software. The team met both the
schedule and cost targets. An additional benefit was seen
after the development was complete and the transmission
was installed in a vehicle. The planned six months of wheels-
up testing before calibration was reduced to two days.
The total schedule reduction was 18 months.

Building the Models for your Company

Here are a few steps that are required to build and execute any model, including:

Generally, a tool is used to develop the model. Tools such as Matlab are used to model the plant, while tools like

Simulink are used to model control algorithms. Rhapsody or similar programs can be used to model the software. These

devices are used to create the models, and then simulation is used for debugging the models. The process continues

until the model displays the desired behavior.

Once the models have been created, they need to be validated. For plan models, this generally means measuring the

characteristics of production or prototype parts and entering that data into the models. To validate control algorithms,

plant models must first be validated.

Once models have been validated, the simulations can be used to tune or optimize various aspects of the

product performance.

How to Implement Model-Based Development
for your Company

There are many ways to implement model-based development in an organization. Some companies start small, focusing

on a single type of modeling, and then add more modeling techniques over time. Others combine plant, algorithm, and

software modeling all at once.

DEVELOP VALIDATE TUNE

The software for a home hemodialysis machine with
20 operating modes, each with dozens of states,
had been under development for over two years by
30 software engineers. The team was making little
progress. A CASE tool supporting State Charts and
code generation was employed to model the software
and generate the code. A prototype was ready for
animal testing in less than six months.

For two years, during the development of an implantable
left ventricular assist pump (LVAD), engineers tried
to solve the problem of blood clotting in a particular
area of the pump. These clots could lead to a stroke in
the patient, a common problem with LVADs. Several
prototypes were developed, which cost both time and
money. Finally, a company was hired to create a CFD
model of the blood flow through the pump. A solution
was found in a matter of weeks.

1 2 3

12 | What Model-Based and Component-Based Software Development Means for your Organization 13

Regardless of your approach, the following steps apply:

•	 Determine the main characteristics of your product

•	 Determine how you will use the models

•	 Determine what you will model

To determine the main characteristics of your product, ask the following questions:

•	 Is there a lot of dynamic behavior that requires closed-loop control?

•	 Is there much state behavior?

Depending on the systems you use, various tools can be implemented, such as:

•	 Systems that exhibit mainly dynamic behavior

(like vehicle control systems) can use tools like

Matlab and Simulink, as they excel at modeling

mostly control behavior.

•	 Systems that exhibit mostly state behavior

(like medical devices) can benefit from tools

like Rhapsody, which provides excellent

real-time modeling systems.

•	 If the system exhibits a mix of dynamic and other

states of behavior, including automatic transmissions

and process control systems, companies will often opt

for multiple tools to model various types of behavior.

Once you understand the characteristics of your system, determine what you want to get out of the models. For

example, do you want modeling to reduce development times and costs and improve quality? How will you achieve

these goals—co-simulation of plant and software models, DOE studies to optimize design, generation of code from

models, or automated test generation?

Next, determine what you will model, such as:

•	 A detailed plant model

•	 A detailed control model

•	 A detailed software model

•	 All or some combination

Finally, pick one or more modeling tools that support

your decisions.

Benefits of Model-Based Development for your Company

If done correctly, there can be several benefits to model-based development.

For example, this type of product modeling can help:

•	 Find errors in requirements very early in the process

•	 Find mistakes in design very early in the process

•	 Reduce the number of prototypes that need to

be built

•	 Reduce the time to develop robust algorithms

•	 Reduce time to produce production code

•	 Create and test the test protocols

These benefits can reduce development time and costs and improve quality. However, there is a caveat—the quality

of the simulation is only as good as the accuracy and fidelity of the models.

Challenges with Model-Based
Development

There can be several challenges with employing

model-based development.

Many companies don’t have the in-house expertise to

develop suitable models. A company might make a significant

investment in acquiring tools and development of models, only

to learn that the models are not helpful. If your organization

does not have experience with model development, you can

benefit from bringing in an experienced contractor to help.

It takes time to develop a useful set of models. It can be

difficult to create complex physics-based models and control

algorithms. In addition, complex state behavior can be difficult

to model. A Unified Modeling Language (UML) software model for a product is also time-consuming. In addition, the

models need to be validated. The result is that it usually takes longer for real hardware and software to be seen.

However, if done right, the overall development time and costs of a reliable, quality product are lower.

Good modeling tools are expensive. There can be a significant upfront investment with annual renewals of around

20% of the initial product cost. However, inexpensive tools with limited functionality can be problematic for several

reasons, including:

•	 It takes much longer to develop models with the

lower end tools, and the resulting models are

not very useful

•	 These tools tend to have inferior simulation

capabilities

•	 Support tends to be very limited

•	 Better quality tools cannot use the models should

you decide to upgrade

•	 There is minimal reduction in schedule and budget

•	 There is very little improvement in quality

When making your selection, consider

the following:

•	 What is the cost per seat of your

selected tool?

•	 Does your computer hardware

support your selected tool?

•	 What are the IT requirements

needed to support the tools and

hardware?

•	 How many individuals do I need to

train? (Plan for three days to four

weeks of training per user depending

on the complexity of the tool.)

14 | What Model-Based and Component-Based Software Development Means for your Organization 15

Component-Based
Development

History of Component-Based
Development

Component-based development began in the early 19th century by

introducing interchangeable parts for gun manufacturing.

Today, the development of reusable mechanical and electrical components is

commonplace. In addition, many companies are developing reusable components

that include reusable software. For example, AUTOSAR, in the automotive

industry, allows companies to build hardware with software sub-systems that

can be integrated on an OEM platform independent of the target hardware and

underlying architecture.

1959

1986

1968

1990

The invention of the integrated circuit
in 1959 enabled component-based
development of electronics. Reusable
transistor circuits could be implemented
in an IC. These reusable circuits could
then be combined with other reusable
circuits on an IC to create a chip with
greater functionality. Today, there are
chips with billions of transistors, all built
from smaller, reusable circuits.

The Objective C language was developed
for the express purpose of creating
reusable software components.
Unfortunately, these early attempts to
build reusable software components were
not entirely successful.

In the early 1990s, the Design of
Experiments (DOE) techniques were

developed for design optimization. Models
of the product were built. By specifying an

objective function and varying parameters
of each of the components in the

development, an optimal design could be
arrived at in a relatively short time.

The concept of component-based
software development was introduced

COMPONENT-
BASED

SECTION 2

16 | What Model-Based and Component-Based Software Development Means for your Organization 17

Definition of Component-Based Development

A reusable component is a component that can be used in many different designs with little or no modification.

For example, the same electric motor can drive a fan, spin a wheel, open a door, etc.

 There are three types of reusable components, including:

1.	 Hardware (mechanical and electrical)

2.	 Software

3.	 Hardware with software content

A fundamental reusable component generally performs a single function. For example, a motor produces torque

to drive a process. That same motor can be used in several types of applications. As long as the engineer knows the

essential characteristics of the motor (dimensions, weight, torque output, etc.) they can integrate the motor into

their design. Electronics and software can be combined with the engine that provides closed loop motor control. If

the interfaces to the electronics and software are known, this

new component can be used in many different applications.

Reusable components are essentially building blocks. These

building blocks can be integrated with others to form larger

building blocks that perform more complex functions.

Finally, these components can be integrated to create fully

functioning products and systems.

Implementation of Component-
Based Development for your
Company

First, identify hardware and software elements common to

several of your products. These include things like:

•	 Motors

•	 Pumps

•	 Valves

•	 Imaging elements

•	 Graphical User Interface (GUI) elements

Next, develop the following types of hardware and software

architectures to support reusable components:

•	 Standard operating system

•	 Standard mechanical and electrical interfaces

•	 Standard hardware and software communications

interfaces

•	 Standard GUI development environment and widgets

•	 Standard microprocessors and microcontrollers

•	 Standard sensors and actuators

Finally, identify the parameters of the components that

can be adjusted to configure the component for different

applications. These parameters are hardware and software

calibrations whose values are set for each application.

Model-based development tools can help develop and

manage reusable components. In addition, simulation can be

beneficial when integrating components for a new design.

Lastly, DOEs can be very useful for optimizing a new design.

Benefits of Component-Based
Design for your Company
The main benefits of component-based design are:

The initial development of a reusable component tends to take longer because the designer needs to anticipate how

it will be used in other designs and interfaces to accommodate those applications. However, development times can

be significantly reduced when that component is reused in a subsequent design.

The component is tested once for the initial design. If the component is reused without modification in a subsequent

method, the testing for that component is significantly reduced. This is especially true in highly regulated industries

like the medical device industry, where software testing effort accounts for two-thirds of the total software

development effort.

Reduction of
development
time and cost

Increased
reliability
over time

Economies
of scale

18 | What Model-Based and Component-Based Software Development Means for your Organization 19

When a component is reused, it is configured rather than

developed. Configuration of a component takes a small

fraction of the effort required to create it. Simulation can

reduce the time it takes to configure the component.

When problems with a component are found in the field,

they are fixed and tested. If this is a reusable component,

it is more robust when used in the subsequent design

than in the original design. As a result, reusable components

tend to improve over time, reducing costs associated with

failures in the field.

Reusable components benefit from economies of scale. Not

only are development and maintenance costs reduced, but

larger quantities of the components can be purchased at one

time, leading to lower unit costs.

Examples of Component-Based Development

Challenges of Component-Based Design

There are several challenges with implementing component-based development.

As mentioned earlier, designing a component that can be used in different applications takes longer and costs

more. Suppose you have a single product that you refresh every 10 to 15 years. In that case, you are unlikely to see

any benefits, but will face the additional development costs associated with developing a reusable component.

Over time, some parts become obsolete, which means components will have to be redesigned and retested.

This is generally cheaper than developing the element from scratch, but it may impact the component’s

interfaces. A redesign might also introduce flaws that are not identified before the release of the component.

It isn’t easy to anticipate how a component will be used in different applications. This difficulty increases with

the complexity of the component. It’s common practice to add many calibration parameters in both the hardware

and software to counter this. Many calibrations can lead to a much longer time to calibrate the device for a

specific application.

Automotive OEMs purchase sub-systems such as brake
by wire, throttle by wire, and other sophisticated control
systems from vendors. In the past, the OEM was forced
to buy the hardware and software as a package from the
vendor. As a result, they would have different hardware
and software for the same type of sub-system on various
vehicle platforms. However, to reduce time to market
and development costs, many OEMs are adapting the
AUTOSAR architecture. This allows the development or
acquisition of software that can be reused across many
vehicle platforms, independent of the underlying hardware.
There have been some initial examples of success using
this approach.

A medical device manufacturer creates reusable
pump units that combine hardware and software.
These pumps are integral to several products
manufactured and sold globally. Significant
reductions in development times and costs have
been realized through reusable components.

Automotive OEMs have a few engines and
transmissions that can be configured and used in
dozens of vehicle models. The OEM uses large-scale
DOEs to optimize fuel economy, performance, unit
costs, etc. for a specific vehicle platform. This results in
significant savings in development time and cost.

1 2 3

20 | Model-Based and Component-Based Software Development 21

Over time, organizations have managed to reduce development costs through

model-based and component-based development, even as regulations and

device complexity grows. Using these tools and methodologies can make

development methods more practical, and they can significantly reduce

development time and cost and improve quality. However, if your organization

requires an expert level of support, Oxford can help you implement these

techniques and strategies.

*Data was pulled by Ken Macklem through his own expertise and research.

About Oxford
Oxford Global Resources is known for our unmatched ability to deliver

The Right Talent. Right Now®. As a leading staffing and consulting company

with offices across North America and Europe, we focus on proactively

building a network of highly skilled professionals so that we can immediately

connect our clients to the expertise they need and provide rewarding opportu-

nities for our consultants. We leverage over 35 years of recruitment expertise

and specialize in fields where superior resource solutions are most in demand.

ABOUT

16,000+ consultants
with software system skills in
our network

381,000 it consultants
in our network

252,000 engineering
consultants in our network

173,200 companies
supported with IT & Engineering
staffing & consulting services

Learn what Oxford can do for your
company at oxfordcorp.com

